Tetrahedron Letters No. 43, pp 4435 - 4438, 1972. Pergamon Press. Printed in Great Britain.

EINE OLEFINSYNTHESE MIT EISENPENTACARBONYL 1)

J. Daub, V. Trautz und U. Erhardt Institut für Organische Chemie der Universität Stuttgart

(Received in Germany 20 September 1972; received in UK for publication 25 September 1972)

Zahlreiche Olefinsynthesen verlaufen formal über eine Eliminierungs-Cyclofragmentierungsreaktion (A)²⁾.

Die Umsetzungen von Thionocarbonaten (X = Y = O; A-B = S) und Phosphiten nach Corey und Winter³⁾ sind ein Beispiel dafür. Diese Phosphitmethode versagt bei thermisch labilen Verbindungen, stärker nucleophile Phosphine erweitern teilweise den Anwendungsbereich⁴⁾.

Wir untersuchen die Anwendungsmöglichkeiten von Übergangsmetallkomplexen bei Olefinsynthesen nach (A). Im folgenden sind Ergebnisse der Umsetzungen von Eisenpentacarbonyl und Thionocarbonaten nach (B) zusammengefaßt⁵⁾.

$$\int_{0}^{\infty} c = s \frac{1}{F_{e}(CO)_{5}}$$

Aus Thionocarbonaten und Eisenpentacarbonyl (Molverhältnis ca. 1:1) entstehen unter Stickstoff bei Temperaturen um oder wenig über 100°C die entsprechenden Alkene mit den in Tabelle 1 angegebenen Ausbeuten.

Die Strukturen der Verbindungen wurden spektroskopisch und durch Vergleich mit auf anderem Wege dargestellten Verbindungen gesichert⁶⁾. Um Aussagen über die Stereospezifität und über mögliche Zwischenstufen bei der Reaktion machen zu können, wurden die diastereomeren Thionocarbonate von 1.2-Diphenyl-

Tabelle 1 Umsetzung von Thionocarbonaten und Eisenpentacarbonyl

Struktur des Thiono- carbonats	Olefin		Ausbeute (%)
meso	cis- und trans-Stilben		78.0
trans	cis-Cyclohexen		10.5
trans	cis-Cyclohepten		35.0
cis		(1)	79.1
cis	A	(<u>2</u>)	44.0
cis		(<u>3</u>)	30.0

<u>Tabelle 2</u> Stereoselektivität bei der Umsetzung der Thionocarbonate von 1.2-Diphenyläthandiol-(1.2) mit Eisenpentacarbonyl⁺⁾

Thionocarbonat	Reaktionszeit	cis-Stilben trans-Stilben
meso	2 Stdn.	0.26
	6 Stdn.	0.31
d, l	2 Stdn.	0.08
	6 Stdn.	0.08

⁺⁾ in Xylol, unter Stickstoff, bei 140°C, Stilbenverhältnis nach Aufarbeitung gaschromatographisch bestimmt

athandiol-(1.2) mit Eisenpentacarbonyl (Molverhältnis 0.95:1) in Xylol umgesetzt. Die Verhältnisse von cis: trans-Stilben nach verschiedenen Reaktionszeiten sind in Tabelle 2 angegeben.

Unter identischen Reaktionsbedingungen wird keine nennenswerte Isomerisierung von cis- bzw. trans-Stilben mit Eisenpentacarbonyl nachgewiesen. Außerdem wird festgestellt, daß während der Reaktion Strukturisomerisierungen der Thionocarbonate erfolgen⁷⁾.

Die geringe Stereoselektivität im Falle der Umsetzung des meso-Thionocarbonats von 1.2-Diphenyläthandiol-(1.2) weist auf Intermediärstufen mit rotationsfreien C-C-Bindungen hin. Zwei mögliche Zwischenstufen erscheinen uns als wahrscheinlich:

Der Übergangsmetallkomplex (4), entstanden aus dem Thionocarbonat durch Schwefeleliminierung, sollte in einem nichtsynchronen Reaktionsablauf möglicherweise über eine Verbindung mit Metall-Kohlenstoff6-Bindung zum Olefin führen 8). In der dipolaren Zwischenstufe (5) muß die Rotation um die C-CBindung schnell im Vergleich zur Weiterreaktion sein. Insbesondere wegen der auftretenden Strukturisomerisierungen der Thionocarbonate bei den Umsetzungen halten wir die Reaktion über (5) für wahrscheinlicher.

Arbeitsvorschrift

Dibenzobarrelen (1)

In einem Zweihalskolben mit Rückflußkühler und Gaseinleitungsrohr werden 1.4 g (5.0 mMol) Thionocarbonat in 30 ml absol. Xylol unter trockenem Stickstoff mit 1.4 g (7.1 mMol) Eisenpentacarbonyl 2 Stdn. zum Sieden erhitzt. Nach dem Abkühlen wird das Xylol am Rotationsverdampfer abgezogen und der Rückstand mit Petroläther mehrmals extrahiert. Aus den Petrolätherextrakten erhält man 1.0 g Rohprodukt. Nach der Reinigung durch Säulenchromatographie (Kieselgel) und anschließender Sublimation verbleiben 0.81 g (79.1%) Dibenzobarrelen (1) mit Schmp. 118–119°C; Lit. 6) Schmp. 118–118.5°C.

Herrn Professor Bredereck danken wir für die Förderung unserer Arbeiten.

- Ausschnittsweise vorgetragen Chemiedozententagung 1972,
 Heidelberg, 10. 14. April 1972.
 Diese Untersuchungen werden von der Deutschen Forschungsgemeinschaft unterstützt.
- Übersicht:
 J. Reucroft u. P.G. Sammes, Quarter. Rev. (London) 25, 135 (1971);

 D. J. Faulkner, Synthesis 1971, 175.
- 3) E.J.Corey u. R.A.E.Winter, J.Amer. chem.Soc. 85, 2677 (1963).
- 4) J. Daub v. U. Erhardt, Tetrahedron 28, 181 (1972).
- Bei der vergleichbaren Umsetzung von Carbonaten der Cyclobuten-3.4-diole mit Dieisennonacarbonyl oder Dinatriumeisentetracarbonyl werden Eisencarbonylkomplexe erhalten.
 - R.H.Grubbs, J.Amer.chem.Soc. 92, 6693 (1970).
- 6) (1): J.C.Muller v. J.Vergne, C.R.Acad.Sci., Paris, Ser.C. 263, 1452 (1966).
 - (2): J.Daub u. P.v.R.Schleyer, Angew.Chem. <u>80</u>, 446 (1968); Angew.Chem.internat.Edit. <u>7</u>, 468 (1968).
 - (3): 1.c.⁴⁾.
- Diese Isomerisierungen treten unter gleichen Bedingungen ohne Eisenpentacarbonyl nicht ein.
- 8) vgl. M.Wrighton, G.S.Hammond v. H.B.Gray, J.Amer.chem.Soc. 93, 3285 (1971) und dort zitierte Literatur.